Физика

Коллоидные частицы серебра восстановили гибкий тонкопленочный транзистор

Коллоидные частицы серебра восстановили гибкий тонкопленочный транзистор

Li Ding et al. / Advanced Electronic Materials, 2021

Инженеры разработали способ автономного восстановления контакта в тонкопленочном транзисторе при помощи коллоидного раствора серебряных частиц в силиконовом масле. Электрическое поле в месте разрыва выстраивает частицы в цепочку, по которой и восстанавливается электрическая цепь. Характеристики транзистора после разрыва восстановили до 99 процентов от изначальных. А чтобы хранить коллоидный раствор прямо на плате и не бояться короткого замыкания, авторы ограничили его область смачиваемости с помощью олеофобного слоя на поверхности гибкой платы. Статья опубликована в журнале Advanced Electronic Materials.

Для гибких дисплеев и носимой электроники зачастую используют тонкопленочные транзисторы. В таких условиях электросхема испытывает множество нагрузок, способных вывести ее из строя. Для обеспечения целостности и гибкости схемы существует несколько подходов: гибкий проводник с малой жесткостью, сложная геометрия соединительной конструкции или же самовосстановление. Первый и второй подходы откладывают момент разрушения контакта, тогда как третий метод способен чинить уже разрушенное соединение, а потому в перспективе может оказаться более подходящим решением.

Самовосстановления контакта можно достичь разными способами: например, использовать жидкий металл, который в случае разрыва цепи восстанавливает связь, высвободившись из микрофлюидных каналов, хрупких диэлектрических оболочек или эластомерного субстрата. Также использовать можно и проводящие полимеры, способные к перестройке и самовосстановлению. Все подходы сравнительно эффективны, однако и у них есть свои проблемы: для восстановления часто необходимы специальные условия (особая влажность или магнитное поле) или редкие металлы, как галлий или индий. К тому же их использование усложняет процесс производства контактных связей.

Еще один подход к самовосстановлению — дисперсия проводящих частиц в диэлектрической среде. Электрическое поле, создающееся в месте разрыва цепи приводит к движению частиц и образованию с их помощью мостика между разорванными контактами. Это позволяет восстановить электрический контакт вне зависимости от причины разрыва, а также избегать короткое замыкание из-за малой концентрации проводящих частиц в дисперсии.

Ли Дин (Li Ding) с коллегами из Кембриджского университета и Индийского научного института создал коллоидный раствор проводящих частиц для самовосстановления напечатанных тонкопленочных транзисторов. Для его приготовления ученые использовали серебряный порошок и силиконовое масло. При образовании разрыва возникающее поле выстраивает проводящие частицы в цепочку между разорванными контактами. Из-за малой теплопроводности дисперсной среды все Джоулево тепло, выделяющееся из-за протекания тока, идет на расплавление серебряных частиц и образование сплошной цепи.

Процесс восстановления разорванной цепи и вольт-амперные характеристики транзистора до, во время и после разрыва

Li Ding et al. / Advanced Electronic Materials, 2021

Фотография контактной цепи со сканирующего гелиевого микроскопа

Li Ding et al. / Advanced Electronic Materials, 2021

Для улучшения восстанавливающей способности инженеры изменяли размер, количество и поверхность серебряных частиц. По размеру частиц существует ограничение сверху: они должны быть на порядок меньше, чем размер капель при печати транзистора, однако чем меньше частицы, тем медленнее они будут образовывать устойчивый мостик между контактами. По количеству частиц так же были ограничения: система должна иметь как можно больше частиц, оставаясь при этом диэлектрической. В ходе подбора параметров ученые выбрали частицы серебра с размером в один микрометр и с концентрацией в 10-20 миллиграмм на миллилитр. Для предотвращения слипания частиц и их выпадения авторы статьи использовали масляную кислоту (C17H33COOH).

Фотография со сканирующего электронного микроскопа частиц без обработки и с обработкой масляной кислотой

Li Ding et al. / Advanced Electronic Materials, 2021

Для описания восстанавливающей способности дисперсии ученые напечатали серебряные контакты на подложке из полиэтилен-нафталата с толщиной разрыва в 20 и 80 микрометров. Затем к границам контактов подключили измерительный источник питания с постоянным током. За процессом восстановления связи наблюдали с помощью микроскопа. Время восстановления уменьшалось вместе с ростом концентрации серебряных частиц: от 10-100 секунд для 10 миллиграмм на миллилитр до 0,01-1 секунды для 40 миллиграмм на миллилитр.

При напряженности электрического поля меньше 0,6 вольта на микрометр восстановления не наблюдалось, а при напряженности выше 1,3 вольта на микрометр перемычка не справлялась с большой силой тока и разрыв возникал снова. Поэтому авторы обозначили области напряженности электрического поля для устойчивого образования проводящих перемычек — между 0,6 и 1,3 вольта на микрометр. При этом типичные напряженности в тонкопленочных транзисторах — 1,05 вольта на микрометр.

Для проверки восстанавливающих свойств дисперсии на реальных объектах авторы напечатали тонкопленочный транзистор и усилители напряжения. Транзистор состоял из серебряных источника, стока и затвора, слоя поливинил циннамата в качестве диэлектрика и 6,13-бис(три-изопропилсилилэтинил) пентацен в качестве полупроводника. Разрывы были устроены в двух местах: между источником и затвором и между затвором и стоком. Восстановление наблюдалось в обоих случаях, за 200 секунд восстановился контакт при напряженности в 0,7 вольт на микрометр. При этом и через пять минут после установления соединения характеристики транзистора практически полностью восстановились (99 процентов по сравнению с изначальными). После ста циклов изгибов пленки с восстановленным контактом его электрические характеристики так же остались неизменными.

Для применения дисперсии в однокаскадном усилителе напряжения с общим эмиттером, основанном на тонкопленочных транзисторах, авторы проверили разрывы в трех местах и во всех случаях дисперсия наладила контакт и вернула в исходное состояние усиленное выходное напряжение.

Схема транзистора и его реализация

Li Ding et al. / Advanced Electronic Materials, 2021

Схема усилителей напряжения с общим эмиттером

Li Ding et al. / Advanced Electronic Materials, 2021

Однако для того, чтобы использовать восстанавливающую дисперсию в реальных системах, ученым было необходимо придумать, где ее хранить до разрыва цепи и как обеспечить ее высвобождение. Авторы решили нанести диэлектрическую дисперсию на всю электросхему, однако во избежание короткого замыкания подложка схемы была поделена на олеофильные (те, что смачиваются неполярными жидкостями) и олеофобные (те, что не смачиваются неполярными жидкостями) области. Для этого они нанесли трихлоро(1H,1H,2H,2H-перфтороктил) силан, закрыв с помощью маски олеофильные области, в которой будет находиться дисперсия. При проверке электрических свойств транзистора с олеофобными областями — отклонений от первоначальных практически не наблюдалось. Таким образом, инженеры придумали новый способ регенерации электрического контакта в гибких тонкослойных транзисторах, который значительно продлит срок использования носимых устройств.

Маска для нанесения олеофобного слоя

Li Ding et al. / Advanced Electronic Materials, 2021

Распределение дисперсной системы по поверхности без обработки и с обработкой олеофобным веществом

Li Ding et al. / Advanced Electronic Materials, 2021

Когда говорят о самозаживляющихся материалах, чаще всего подразумевают полимеры, которые под воздействием извне могут восстановить сплошную структуру и прочность вещества. Однако в прошлом году китайские химики получили полимер, способный срастаться и без всяких стимулов — все благодаря трем связующим компонентам — линкерам в его составе.

Источник

Похожие статьи

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Кнопка «Наверх»
Закрыть
Закрыть